Model Y

Model Y front

Printing the Eclipson Model Y

For my fourth printed RC plane the Model Y from Eclipson. I would like to use this plane in the future for some camera work and/or FTV testing. This plane is also printed in PETG except for the landing gears and servo holders who were printed in ASA. Information about my 3D printing equipment you find in the post; printing the Kodo. For more detailed information about my printing experience with PETG, you can read my post; printing the Stearman. Printing this plane I tried to solve some drawbacks of printing RC airplanes in PETG. First, I tried to limit the higher PETG density leading to higher wing load by enlarging the main wing surface. This was possible to scale some wing part in one direction and create the main wing of 1.2 m instead of 1 m. Second, to reduce the flexibility in the four outer wing parts I used a small 2% vertical rectilinear infill This increased the weight only by 15 grams. I experimented also airbrushing the other wings and the sides of the fuselage in the red color. To be able to paint on PETG I used a transparent primer for all plastics in a rattle can.

Electronics for this Model Y

I used a Pichler Boost 18 motor with KV 1050 with a Pichler Boost  XQ 30 ESC, 4 Savox SH-0257 MG  (Metal gear) servos, a Spektrum AR6610T 6 channel receiver,  and a Turnigy nano-tech 3S 950 mAh battery.


MOD1: Modified STL files in the slicer Simpify3D to scale some part in one axis to get more wing surface (+ 2 dm2).
MOD2: Made some wing parts stiffer by using a 2% rectilinear infill.
MOD3: Printed a semi-transparent cockpit in PETG and airbrushed it black on the inside for the looks.
MOD4: Added A3super 3 Gyro from Hobbyeagle to improve stability and still to be able to use the ailerons as flaperons to reduce landing distance.
MOD5: After calculation with Ecalc bought an optimal Parkzone propeller instead of the standard available APC Electrical propellers.


Till now I did not maiden this RC Airplane. Al static tests were OK, the plane was certified for flying at or RC terrain in Lier and had a photoshoot. When the weather improves I will fly this plane.

Aircraft Characteristics after Configuration and modification

Wing Span: 1.2 m
Length: 0.8 m
Flight Weight: 0.9 kg
Wing Aera: 15 dm2
Wing Loading: 60 gr/dm2
Wing Cube Loading: WCL 15
Power: 3S 950 mAh
Motor: Pichler 18 KV1050 Outrunner
Propeller: 1x PARKZ 8.25x5.5 2-blade
Stall Speed: 30 km/u
Sound Pressure: <50 dB(A)/7m

Calculations:  Ecalc - reliable electric drive simulationsModel Y calc


Maripi 3D Acro

Maripi front
Maripi top
Maripi sidePrinting the Maripi

This RC Acro Airplane was my second printed RC airplane. The Maripi is also an RC airplane designed by Kraga. More information about my printers and software you will find in my other post on the Kraga Kodo. To experiment when further with the 3D printed airplanes, I choose to make the second plane in another material HIPS - High Impact Polystyrene. The combination of carbon struts, covering film, lightweight design, and the fuselage with carbon reinforcement has proven to be successful.  I choose the white and black Makerfill HIPS filament and Oracover Red Transparant Fluorescent film. High impact polystyrene (HIPS) is a material blend of polystyrene plastic and polybutadiene rubber. The mixture of these polymers results in a material that’s both tough and flexible. HIPS is very similar to ABS, but as the name implies, it’s capable of withstanding much higher impact forces. It’s easily painted, machinable, and works with a large number of adhesives. I designed some extra parts in FreeCAD 0.18  as battery support, a receiver-, and gyro support, wing base and wing ends. Some of my Printer settings are; minimum volume 200x200x180 mm, Extruder 0.4 mm, Layer Height 0.19 mm, Extruder Temp 245 ºC, Filament Speed max 40 mm/s, Bed 90 ºC, Cooling 0%.

Electronics for this Maripi

I used an Extron motor 2814/20 KV800 Outrunner with an Extron iQ-40 ESC, 4 Savox SH-0257 MG (Metal gear) servos, a Spektrum AR6610T 6 channel receiver,  and a Yuki Brainergy 3S 2800 mAh battery.


MOD1: Modified the main wing connection with printed and glued HIPS base plate on the main wings and two super magnets and modified extra flexible safety connection.
MOD2: Modified tail section with extra HIPs elevator and rudder parts to close the surface ends
MOD3: Printed a semi-transparent cockpit in PET-G for the looks and to test this material.
MOD4: Added A3Pro Gyro from Hobbyeagle to improve stability and to test the auto hoover mode.


A successful maiden flight, but only with the help of the A3pro gyro's, because de Centre of Gravity was not forward enough. I had to add extra weight left and right of the motor and glued in with a hot glue gun. After more flights seem this plane performs well, but the HIPS material seems to crack easily when you hold the wing firm, probably because of the different material properties between HIPS and original by Kraga proposed PLA. Not done too much Acro till now. No crashes so, fortunately, I can not evaluate the HIPS resistance to impact forces.

Aircraft Characteristics after Configuration and Modification

Wing Span: 1.1 m
Length: 1.0  m
Flight Weight: 1.2 kg
Wing Aera: 20 dm2
Wing Loading: 60 gr/dm2
Wing Cube Loading: WCL 13.4
Power: 3S 2800 mAh
Motor:  Extron 2814/20 KV800 Outrunner
Propeller: APC 1x  11x5.5 2-blade
Stall Speed: 32 km/u
Sound Pressure: 50 dB(A)/7m